Внутреннее сопротивление источника тока на графике. Определение внутреннего омического сопротивления (постоянному току) у батарейки или аккумулятора

22.11.2023 Software

Необходимость введения термина можно проиллюстрировать следующим примером. Сравним два химических источника постоянного тока с одинаковым напряжением:

  • Автомобильный свинцово-кислотный аккумулятор напряжением 12 вольт и ёмкостью 55 А·ч
  • Восемь батареек типоразмера АА, соединенных последовательно. Суммарное напряжение такой батареи также 12 вольт, ёмкость значительно меньше - примерно 1 А·ч

Несмотря на одинаковое напряжение, эти источники значительно отличаются при работе на одинаковую нагрузку. Так, автомобильный аккумулятор способен отдать в нагрузку большой ток (от аккумулятора заводится двигатель автомобиля, при этом стартер потребляет ток 250 ампер), а от цепочки батареек стартер вообще не вращается. Относительно небольшая емкость батареек не является причиной: одного ампер-часа в батарейках хватило бы для того, чтобы вращать стартер в течение 14 секунд (при токе 250 ампер).

Таким образом, для двухполюсников, содержащих источники (то есть генераторы напряжения и генераторы тока) необходимо говорить именно о внутреннем сопротивлении (или импедансе). Если же двухполюсник не содержит источников, то «внутреннее сопротивление» для такого двухполюсника означает то же самое, что и просто «сопротивление».

Родственные термины

Если в какой-либо системе можно выделить вход и/или выход, то часто употребляются следующие термины:

Физические принципы

Несмотря на то, что на эквивалентной схеме внутреннее сопротивление представлено как один пассивный элемент (причём активное сопротивление , то есть резистор в нём присутствует обязательно), внутреннее сопротивление не сосредоточено в каком-либо одном элементе. Двухполюсник лишь внешне ведёт себя так, словно в нём имеется сосредоточенный внутренний импеданс и генератор напряжения. В действительности внутреннее сопротивление является внешним проявлением совокупности физических эффектов:

  • Если в двухполюснике имеется только источник энергии без какой-либо электрической схемы (например, гальванический элемент), то внутреннее сопротивление практически чисто активное (если только речь не идет об очень высоких частотах), оно обусловлено физическими эффектами, которые не позволяют мощности , отдаваемой этим источником в нагрузку, превысить определённый предел. Наиболее простой пример такого эффекта - ненулевое сопротивление проводников электрической цепи. Но, как правило, наибольший вклад в ограничение мощности вносят эффекты неэлектрической природы. Так, например, в мощность может быть ограничена площадью соприкосновения участвующих в реакции веществ, в генераторе гидроэлектростанции - ограниченным напором воды и т. д.
  • В случае двухполюсника, содержащего внутри электрическую схему , внутреннее сопротивление «рассредоточено» в элементах схемы (в дополнение к перечисленным выше механизмам в источнике).

Отсюда также следуют некоторые особенности внутреннего сопротивления:

Влияние внутреннего сопротивления на свойства двухполюсника

Эффект внутреннего сопротивления является неотъемлемым свойством любого активного двухполюсника. Основной результат наличия внутреннего сопротивления - это ограничение электрической мощности, которую можно получить в нагрузке, питаемой от этого двухполюсника.

Пусть, имеется двухполюсник, который может быть описан приведённой выше эквивалентной схемой. Двухполюсник обладает двумя неизвестными параметрами, которые необходимо найти:

  • ЭДС генератора напряжения U
  • Внутреннее сопротивление r

В общем случае, для определения двух неизвестных необходимо сделать два измерения: измерить напряжение на выходе двухполюсника (то есть разность потенциалов U out = φ 2 − φ 1 ) при двух различных токах нагрузки. Тогда неизвестные параметры можно найти из системы уравнений:

(Напряжения)

где U out1 I 1 , U out2 - выходное напряжение при токе I 2 . Решая систему уравнений, находим искомые неизвестные:

Обычно для вычисления внутреннего сопротивления используется более простая методика: находится напряжение в режиме холостого хода и ток в режиме короткого замыкания двухполюсника. В этом случае система () записывается следующим образом:

где U oc - выходное напряжение в режиме холостого хода (англ. open circuit ), то есть при нулевом токе нагрузки; I sc - ток нагрузки в режиме короткого замыкания (англ. short circuit ), то есть при нагрузке с нулевым сопротивлением. Здесь учтено, что выходной ток в режиме холостого хода и выходное напряжение в режиме короткого замыкания равны нулю. Из последних уравнений сразу же получаем:

(ВнутрСопр)

Измерение

Понятие измерение применимо к реальному устройству (но не к схеме). Непосредственное измерение омметром невозможно, поскольку нельзя подключить щупы прибора к выводам внутреннего сопротивления. Поэтому необходимо косвенное измерение , которое принципиально не отличается от расчёта - также необходимы напряжения на нагрузке при двух различных значениях тока. Однако воспользоваться упрощённой формулой (2) не всегда возможно, поскольку не каждый реальный двухполюсник допускает работу в режиме короткого замыкания.

Иногда применяется следующий простой способ измерения, не требующий вычислений:

  • Измеряется напряжение холостого хода
  • В качестве нагрузки подключается переменный резистор и его сопротивление подбирается таким образом, чтобы напряжение на нём составило половину от напряжения холостого хода.

После описанных процедур сопротивление резистора нагрузки необходимо измерить омметром - оно будет равно внутреннему сопротивлению двухполюсника.

Какой бы способ измерения ни использовался, следует опасаться перегрузки двухполюсника чрезмерным током, то есть ток не должен превышать максимально допустимого значениях для данного двухполюсника.

Реактивное внутреннее сопротивление

Если эквивалентная схема двухполюсника содержит реактивные элементы - конденсаторы и/или катушки индуктивности , то расчет реактивного внутреннего сопротивления выполняется также, как и активного, но вместо сопротивлений резисторов берутся комплексные импедансы элементов, входящих в схему, а вместо напряжений и токов - их комплексные амплитуды , то есть расчет производится методом комплексных амплитуд .

Измерение реактивного внутреннего сопротивления имеет некоторые особенности, поскольку оно является комплекснозначной функцией , а не скалярным значением:

  • Можно искать различные параметры комплексного значения: модуль , аргумент , только вещественную или мнимую часть, а также комплексное число полностью. Соответственно, методика измерений будет зависеть от того, что хотим получить.
  • Любой из перечисленных параметров зависит от частоты. Теоретически, чтобы получить путем измерения полную информацию о реактивном внутреннем сопротивлении, необходимо снять зависимость от частоты, то есть провести измерения на всех частотах, которые может генерировать источник данного двухполюсника.

Применение

В большинстве случаев следует говорить не о применении внутреннего сопротивления, а об учете его негативного влияния, поскольку внутреннее сопротивление является скорее негативным эффектом. Тем не менее, в некоторых системах наличие внутреннего сопротивления с номинальным значением является просто необходимым.

Упрощение эквивалентных схем

Представление двухполюсника как совокупность генератора напряжения и внутреннего сопротивления является наиболее простой и часто используемой эквивалентной схемой двухполюсника.

Согласование источника и нагрузки

Согласование источника и нагрузки - это выбор соотношения сопротивления нагрузки и внутреннего сопротивления источника с целью достижения заданных свойств полученной системы (как правило, стараются достичь максимального значения какого-либо параметра для данного источника). Наиболее часто используются следующие типы согласования:

Согласование по току и мощности следует использовать с осторожностью, так как есть опасность перегрузить источник.

Понижение высоких напряжений

Иногда к источнику искусственно добавляют большое сопротивление (оно добавляется к внутреннему сопротивлению источника) для того, чтобы значительно понизить получаемое от него напряжение. Однако добавление резистора в качестве дополнительного сопротивления (так называемый гасящий резистор) ведёт к бесполезному выделению мощности на нём. Чтобы не расходовать энергию впустую, в системах переменного тока используют реактивные гасящие импедансы, чаще всего конденсаторы . Таким образом строятся конденсаторные блоки питания. Аналогично, при помощи ёмкостного отвода от высоковольтной ЛЭП можно получить небольшие напряжения для питания каких-либо автономных устройств.

Минимизация шума

При усилении слабых сигналов часто возникает задача минимизации шума, вносимого усилителем в сигнал. Для этого используются специальные малошумящие усилители , однако они спроектированы таким образом, что наименьший коэффициент шума достигается лишь в определенном диапазоне выходного сопротивления источника сигнала. Например, малошумящий усилитель обеспечивает минимальный шум только в диапазоне выходных сопротивлений источника от 1 кОм до 10 кОм; если источник сигнала обладает меньшим выходным сопротивлением (например, микрофон с выходным сопротивлением 30 Ом), то следует применить между источником и усилителем повышающий трансформатор , который повысит выходное сопротивление (а также напряжение сигнала) до необходимого значения.

Ограничения

Понятие внутреннего сопротивления вводится через эквивалентную схему, поэтому имеют силу те же ограничения , что и для применимости эквивалентных схем.

Примеры

Значения внутреннего сопротивления относительны: то, что считается малым, например, для гальванического элемента, является очень большим для мощного аккумулятора. Ниже приведены примеры двухполюсников и значения их внутреннего сопротивления r . Тривиальные случаи двухполюсников без источников оговорены особо.

Малое внутреннее сопротивление

Большое внутреннее сопротивление

Отрицательное внутреннее сопротивление

Существуют двухполюсники, внутреннее сопротивление которых имеет отрицательное значение. В обычном активном сопротивлении происходит диссипация энергии, в реактивном сопротивлении энергия запасается, а затем выделяется обратно в источник. Особенность отрицательного сопротивления в том, что оно само является источником энергии. Поэтому отрицательное сопротивление в чистом виде не встречается, оно может быть только имитировано электронной схемой, которая обязательно содержит источник энергии. Отрицательное внутреннее сопротивление может быть получено в схемах путём использования:

  • элементов с отрицательным дифференциальным сопротивлением , например, туннельных диодов

Системы с отрицательным сопротивлением потенциально неустойчивы и поэтому могут быть использованы для построения автогенераторов .

См. также

Ссылки

Литература

  • Зернов Н. В., Карпов В.Г. Теория радиотехнических цепей. - М. - Л.: Энергия, 1965. - 892 с.
  • Джонс М. Х. Электроника - практический курс. - М.: Техносфера, 2006. - 512 с.

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

8.5. Тепловое действие тока

8.5.1. Мощность источника тока

Полная мощность источника тока:

P полн = P полезн + P потерь,

где P полезн - полезная мощность, P полезн = I 2 R ; P потерь - мощность потерь, P потерь = I 2 r ; I - сила тока в цепи; R - сопротивление нагрузки (внешней цепи); r - внутреннее сопротивление источника тока.

Полная мощность может быть рассчитана по одной из трех формул:

P полн = I 2 (R + r ), P полн = ℰ 2 R + r , P полн = I ℰ,

где ℰ - электродвижущая сила (ЭДС) источника тока.

Полезная мощность - это мощность, которая выделяется во внешней цепи, т.е. на нагрузке (резисторе), и может быть использована для каких-то целей.

Полезная мощность может быть рассчитана по одной из трех формул:

P полезн = I 2 R , P полезн = U 2 R , P полезн = IU ,

где I - сила тока в цепи; U - напряжение на клеммах (зажимах) источника тока; R - сопротивление нагрузки (внешней цепи).

Мощность потерь - это мощность, которая выделяется в источнике тока, т.е. во внутренней цепи, и расходуется на процессы, имеющие место в самом источнике; для каких-то других целей мощность потерь не может быть использована.

Мощность потерь, как правило, рассчитывается по формуле

P потерь = I 2 r ,

где I - сила тока в цепи; r - внутреннее сопротивление источника тока.

При коротком замыкании полезная мощность обращается в нуль

P полезн = 0,

так как сопротивление нагрузки в случае короткого замыкания отсутствует: R = 0.

Полная мощность при коротком замыкании источника совпадает с мощностью потерь и вычисляется по формуле

P полн = ℰ 2 r ,

где ℰ - электродвижущая сила (ЭДС) источника тока; r - внутреннее сопротивление источника тока.

Полезная мощность имеет максимальное значение в случае, когда сопротивление нагрузки R равно внутреннему сопротивлению r источника тока:

R = r .

Максимальное значение полезной мощности:

P полезн max = 0,5 P полн,

где P полн - полная мощность источника тока; P полн = ℰ 2 / 2 r .

В явном виде формула для расчета максимальной полезной мощности выглядит следующим образом:

P полезн max = ℰ 2 4 r .

Для упрощения расчетов полезно помнить два момента:

  • если при двух сопротивлениях нагрузки R 1 и R 2 в цепи выделяется одинаковая полезная мощность, то внутреннее сопротивление источника тока r связано с указанными сопротивлениями формулой

r = R 1 R 2 ;

  • если в цепи выделяется максимальная полезная мощность, то сила тока I * в цепи в два раза меньше силы тока короткого замыкания i :

I * = i 2 .

Пример 15. При замыкании на сопротивление 5,0 Ом батарея элементов дает ток силой 2,0 А. Ток короткого замыкания батареи равен 12 А. Рассчитать наибольшую полезную мощность батареи.

Решение . Проанализируем условие задачи.

1. При подключении батареи к сопротивлению R 1 = 5,0 Ом в цепи течет ток силой I 1 = 2,0 А, как показано на рис. а , определяемый законом Ома для полной цепи:

I 1 = ℰ R 1 + r ,

где ℰ - ЭДС источника тока; r - внутреннее сопротивление источника тока.

2. При замыкании батареи накоротко в цепи течет ток короткого замыкания, как показано на рис. б . Сила тока короткого замыкания определяется формулой

где i - сила тока короткого замыкания, i = 12 А.

3. При подключении батареи к сопротивлению R 2 = r в цепи течет ток силой I 2 , как показано на рис. в , определяемый законом Ома для полной цепи:

I 2 = ℰ R 2 + r = ℰ 2 r ;

в этом случае в цепи выделяется максимальная полезная мощность:

P полезн max = I 2 2 R 2 = I 2 2 r .

Таким образом, для расчета максимальной полезной мощности необходимо определить внутреннее сопротивление источника тока r и силу тока I 2 .

Для того чтобы найти силу тока I 2 , запишем систему уравнений:

i = ℰ r , I 2 = ℰ 2 r }

и выполним деление уравнений:

i I 2 = 2 .

Отсюда следует:

I 2 = i 2 = 12 2 = 6,0 А.

Для того чтобы найти внутреннее сопротивление источника r , запишем систему уравнений:

I 1 = ℰ R 1 + r , i = ℰ r }

и выполним деление уравнений:

I 1 i = r R 1 + r .

Отсюда следует:

r = I 1 R 1 i − I 1 = 2,0 ⋅ 5,0 12 − 2,0 = 1,0 Ом.

Рассчитаем максимальную полезную мощность:

P полезн max = I 2 2 r = 6,0 2 ⋅ 1,0 = 36 Вт.

Таким образом, максимальная полезная мощность батареи составляет 36 Вт.

Электрический ток в проводнике возникает под воздействием электрического поля, заставляющего свободные заряженные частицы приходить в направленное движение. Создание тока частиц - серьезная проблема. Соорудить такое устройство, которое будет поддерживать разность потенциалов поля длительное время в одном состоянии - задача, решение которой оказалось под силу человечеству только к концу XVIII века.

Первые попытки

Первые попытки «накопить электричество» для дальнейшего его исследования и использования были предприняты в Голландии. Немец Эвальд Юрген фон Клейст и голландец Питер ван Мушенбрук, проводившие свои исследования в городке Лейден, создали первый в мире конденсатор, названный позже «лейденской банкой».

Накопление электрического заряда уже проходило под действием механического трения. Использовать разряд через проводник можно было в течение некоторого, достаточно короткого, промежутка времени.

Победа человеческого разума над такой эфемерной субстанцией, как электричество, оказалась революционной.

К сожалению, разряд (электрический ток, создаваемый конденсатором) длился настолько коротко, что создать не мог. Кроме того, напряжение, даваемое конденсатором, постепенно понижается, что не оставляет возможности получать длительный ток.

Нужно было искать иной способ.

Первый источник

Эксперименты итальянца Гальвани по исследованию «животного электричества» были оригинальной попыткой найти естественный источник тока в природе. Развешивая лапки препарированных лягушек на металлических крючках железной решетки, он обратил внимание на характерную реакцию нервных окончаний.

Однако выводы Гальвани опроверг другой итальянец - Алессандро Вольта. Заинтересовавшись возможностью получения электричества из организмов животных, он провел серию экспериментов с лягушками. Но вывод его оказался полной противоположностью предыдущим гипотезам.

Вольта обратил внимание, что живой организм является лишь индикатором электрического разряда. При прохождении тока мышцы лапок сокращаются, указывая на разность потенциалов. Источником электрического поля оказался контакт разнородных металлов. Чем дальше друг от друга они находятся в ряду химических элементов, тем значительнее эффект.

Пластины из разнородных металлов, проложенные бумажными дисками, пропитанными раствором электролита, создавали длительное время необходимую разность потенциалов. И пусть она была невысока (1,1 В), но электрический ток можно было исследовать долгое время. Главное, что напряжение сохранялось неизменным так же долго.

Что происходит

Почему в источниках, получивших название «гальванических элементов», вызывается такой эффект?

Два металлических электрода, помещенных в диэлектрик, играют разные роли. Один поставляет электроны, другой их принимает. Процесс окислительно-восстановительной реакции приводит к появлению избытка электронов на одном электроде, который называют отрицательным полюсом, и недостатка на втором, обозначим его как положительный полюс источника.

В самых простых гальванических элементах окислительные реакции происходят на одном электроде, восстановительные - на другом. Электроны приходят на электроды из внешней части цепи. Электролит является проводником тока ионов внутри источника. Сила сопротивления руководит длительностью процесса.

Медно-цинковый элемент

Принцип действия гальванических элементов интересно рассмотреть на примере медно-цинкового гальванического элемента, действие которого идет в счет энергии цинка и сульфата меди. В этом источнике пластина из меди помещена в раствор а цинковый электрод погружен в раствор сульфата цинка. Растворы разделены пористой прокладкой во избежание смешивания, но обязательно соприкасаются.

Если цепь замкнута, поверхностный слой цинка окисляется. В процессе взаимодействия с жидкостью атомы цинка, превратившись в ионы, появляются в растворе. На электроде высвобождаются электроны, которые могут принимать участие в образовании тока.

Попадая на медный электрод, электроны принимают участие в восстановительной реакции. Из раствора на поверхностный слой поступают ионы меди, в процессе восстановления они превращаются в атомы меди, осаждаясь на медной пластине.

Суммируем происходящее: процесс работы гальванического элемента сопровождается переходом электронов восстановителя к окислителю по внешней части цепи. Реакции идут на обоих электродах. Внутри источника протекает ионный ток.

Сложности использования

В принципе, любая из возможных окислительно-восстановительных реакций может быть использована в батареях. Но веществ, способных работать в ценных технически элементах, не так уж и много. Более того, многие реакции требуют затрат дорогостоящих веществ.

Современные аккумуляторные батареи имеют более простое строение. Два электрода, помещенные в один электролит, заполняют сосуд - корпус батареи. Такие конструктивные особенности упрощают строение и удешевляют аккумуляторы.

Любой гальванический элемент способен создавать постоянный ток.

Сопротивление тока не позволяет всем ионам одновременно оказаться на электродах, поэтому элемент работает достаточно долго. Химические реакции образования ионов рано или поздно прекращаются, элемент разряжается.

Источника тока имеет большое значение.

Немного о сопротивлении

Использование электрического тока, бесспорно, вывело научно-технический прогресс на новую ступень, дало ему гигантский толчок. Но сила сопротивления протеканию тока становится на пути такого развития.

С одной стороны, электрический ток обладает бесценными свойствами, используемыми в быту и технике, с другой - имеется значительное противодействие. Физика как наука о природе пытается установить баланс, привести в соответствие эти обстоятельства.

Сопротивление тока возникает вследствие взаимодействия электрически заряженных частиц с веществом, по которому они движутся. Исключить этот процесс в нормальных температурных условиях невозможно.

Сопротивление

Источника тока и противодействие внешней части цепи имеют несколько различную природу, но одинаковым в этих процессах является совершение работы по перемещению заряда.

Сама работа зависит только от свойств источника и его наполнения: качеств электродов и электролита, так же как для внешних частей цепи, сопротивление которых зависит от геометрических параметров и химических характеристик материала. К примеру, сопротивление металлического провода возрастает с увеличением его длины и уменьшается при расширении площади сечения. При решении задачи, как уменьшить сопротивление, физика рекомендует использовать специализированные материалы.

Работа тока

В соответствии с законом Джоуля-Ленца в проводниках выделяется количество теплоты, пропорциональное сопротивлению. Если количество теплоты обозначить Q внут. , силу тока I, время его протекания t, то получим:

  • Q внут. = I 2 · r · t,

где r - внутреннее сопротивление источника тока.

Во всей цепи, включающей как внутреннюю, так и внешнюю ее части, выделится полное количество теплоты, формула которого имеет вид:

  • Q полное = I 2 · r · t + I 2 · R · t = I 2 · (r +R) ·t,

Известно, как обозначается сопротивление в физике: внешняя цепь (все элементы, кроме источника) имеет сопротивление R.

Закон Ома для полной цепи

Учтем, что основную работу совершают сторонние силы внутри источника тока. Ее величина равна произведению заряда, переносимого полем, и электродвижущей силы источника:

  • q · E = I 2 · (r + R) · t.

понимая, что заряд равен произведению силы тока на время его протекания, имеем:

  • E = I · (r + R).

В соответствии с причинно-следственными связями закон Ома имеет вид:

  • I = E: (r + R).

В замкнутой цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна общему (полному) сопротивлению цепи.

Опираясь на эту закономерность, можно определить и внутреннее сопротивление источника тока.

Разрядная емкость источника

К основным характеристикам источников можно отнести и разрядную емкость. Максимальное количество электричества, получаемое при эксплуатации в определенных условиях, зависит от силы тока разряда.

В идеальном случае, когда выполняются определенные приближения, разрядную емкость можно считать постоянной.

К примеру, стандартная батарейка разности потенциалов 1,5 В обладает разрядной емкостью 0,5 А·ч. Если ток разрядки 100 мА, то работает в течение 5 часов.

Способы зарядки батарей

Эксплуатация батарей приводит к их разрядке. зарядка малогабаритных элементов осуществляется при помощи тока, значение силы которого не превышает одной десятой емкости источника.

Предлагаются следующие способы зарядки:

  • использование неизменного тока в течение заданного времени (порядка 16 часов током 0,1 емкости аккумулятора);
  • зарядка понижающим током до заданного значения разности потенциалов;
  • использование несимметричных токов;
  • последовательное применение кратких импульсов зарядки и разрядки, при которых время первой превышает время второй.

Практическая работа

Предлагается задание: определить внутреннее сопротивление источника тока и ЭДС.

Для его выполнения необходимо запастись источником тока, амперметром, вольтметром, ползунковым реостатом, ключом, набором проводников.

Использование позволит определить внутреннее сопротивление источника тока. Для этого необходимо знать его ЭДС, величину сопротивления реостата.

Расчетная формула сопротивления тока во внешней части цепи может быть определена из закона Ома для участка цепи:

  • I = U: R,

где I - сила тока во внешней части цепи, измеряется амперметром; U - напряжение на внешнем сопротивлении.

Для повышения точности измерения делаются не менее 5 раз. Для чего это нужно? Измеренные в ходе эксперимента напряжение, сопротивление, ток (вернее, сила тока) используются далее.

Чтобы определить ЭДС источника тока, воспользуемся тем, что напряжение на его клеммах при разомкнутом ключе практически равно ЭДС.

Соберем цепь из последовательно включенных батареи, реостата, амперметра, ключа. К клеммам источника тока подключаем вольтметр. Разомкнув ключ, снимаем его показания.

Внутреннее сопротивление, формула которого получена из закона Ома для полной цепи, определим математическими расчетами:

  • I = E: (r + R).
  • r = E: I - U: I.

Измерения показывают, что внутреннее сопротивление бывает значительно меньше внешнего.

Практическая функция аккумуляторов и батарей находит широкое применение. Бесспорная экологическая безопасность электродвигателей не подлежит сомнению, но создать емкий, эргономичный аккумулятор - проблема современной физики. Ее решение приведет к новому витку развития автомобильной техники.

Малогабаритные, легкие, емкие аккумуляторные батареи также крайне необходимы в мобильных электронных устройствах. Запас энергии, применяемой в них, напрямую связан с работоспособностью устройств.

ЭДС и напряжение. Внутреннее сопротивление источников питания.
Ликбез так ликбез!
Закон Ома. Вот я о чем.
О законе Ома мы уже говорили. Поговорим еще раз - с несколько иной стороны. Не вдаваясь в физические подробности и выражаясь простым кошачьим языком, закон Ома гласит: чем больше э.д.с. (электродвижущая сила), тем больше ток, чем больше сопротивление, тем меньше ток.
Переведя сие заклинание на язык сухих формул получаем:

I=E/R

где:I - сила тока,E - Э.Д.С. - электродвижущая силаR - сопротивление
Ток измеряется в амперах, э.д.с. - в вольтах, а сопротивление носит гордое имя товарища Ома.Э.д.с. - это есть характеристика идеального генератора, внутренне сопротивление которого принято считать бесконечно малым. В реальной жизни такое бывает редко, поэтому в силу вступает закон Ома для последовательной цепи (более знакомый нам):

I=U/R

где:U - напряжение источника непосредственно на его клеммах.
Рассмотрим простой пример.
Представим себе обычную батарейку в виде источника э.д.с. и включенного последовательно с ним некоего резистора, который будет олицетворять собой внутреннее сопротивление батарейки. Подключим параллельно батарейке вольтметр. Его входное сопротивление значительно больше внутреннего сопротивления батарейки, но не бесконечно большое - то есть, через него потечет ток. Величина напряжения, которую покажет вольтметр будет меньше величины э.д.с. как раз на величину падения напряжения на внутреннем воображаемом резисторе при данном токе.Но, тем не менее именно эта величина и принимается за напряжение батарейки.
Формула конечного напряжения при этом будет иметь следующий вид:

U(бат)=E-U(внутр)

Так как со временем у всех элементов питания внутреннее сопротивление увеличивается, то и падение напряжения на внутреннем сопротивлении тоже увеличивается. При этом напряжение на клеммах батарейки уменьшается. Мяу!
Разобрались!
Что же происходит, если вместо вольтметра к батарейке подключить амперметр? Так как собственное сопротивление амперметра стремится к нулю, мы фактически будем измерять ток, протекающий через внутреннее сопротивление батарейки. Так как внутренне сопротивление источника очень небольшое, измеренный при этом ток может достигать н ескольких ампер.
Однако следует заметить, что внутреннее сопротивление источника является таким же элементом цепи, как и все остальные. Поэтому при увеличении тока нагрузки падение напряжения на внутреннем сопротивлении также увеличится, что приводит к уменьшению напряжения на нагрузке. Или как мы, радиокоты, любим выражаться - к просадке напруги.
Чтобы изменение нагрузки как можно меньше влияло на выходное напряжение источника его внутреннее сопротивление стараются свести к минимуму.
Можно так подобрать элементы последовательной цепи, чтобы на каком-нибудь из них получить напряжение, уменьшенное, по сравнению с исходным, во сколько угодно раз.