Ir2153 лучшие схемы и описания для всех. Простой ИБП на IR2153 с защитой от перегрузки и КЗ (300Вт)

28.11.2021 Windows 10

Представляю вашему вниманию импульсный источник питания для УМЗЧ на популярной микросхеме IR2153.

Данный блок питания обладает следующими достоинствами:

  • Защита от перегрузок и короткого замыкания как в первичной обмотке импульсного трансформатора, так и во вторичных цепях питания.
  • Схема плавного пуска ИБП.
  • Варистор на входе ИБП защищает от повышение сетевого напряжения выше опасного значения и от подачи на вход 380В.
  • Простая и дешевая схема.

Основные технические характеристики ИБП (характеристики приведены для моего конкретного экземпляра):
Долговременная выходная мощность - 300Вт
Кратковременная выходная мощность - 500Вт
Рабочая частота - 50кГц
Выходное напряжение - 2х35В (можно получить любое необходимое выходное напряжение в зависимости от намотки трансформатора).
КПД - не менее 85% (зависит от трансформатора)

Управляющая часть ИБП является стандартной и взята прямиком из даташита на IR2153.
Схема ИБП включает в себя так же: защиту от перегрузок и КЗ. Защита может быть настроена на любой необходимый ток срабатывания с помощью подстроечного резистора - R10. О срабатывании защиты свидетельствует свечение светодиода HL1. При активной защите, в аварийном состоянии ИБП может находится сколько угодно долго, при этом он потребляет ток такой же как и на холостом ходу без нагрузки. В моей версии защита настроена на срабатывание при потреблении от ИБП мощности 300Вт и более. Это гарантирует то, что ИБП не будет перегружен и не выйдет из строя в результате перегрева.В качестве датчика тока в данной схеме используются резисторы включенные последовательно с первичной обмоткой импульсного трансформатора. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. При КЗ или перегрузке, когда падение напряжения на R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме.

Схема ИБП предусматривает плавный пуск, для этого в ИБП присутствует специальный узел, который ограничивает пусковой ток. Это необходимо для того, чтобы облегчить работу ключам при запуске ИБП. При подключении ИБП в сеть, пусковой ток ограничивается резистором R6. Через данный резистор течет ВЕСЬ ток. Этим током заряжается основная первичная емкость С10 и вторичные емкости. Все это происходит в считанные доли секунд, и когда зарядка завершена и ток потребления снизился до номинального значения, происходит замыкание контактов реле К1 и контакты реле шунтируют R6, тем самым запуская ИБП на полную мощность. Весь процесс занимает не более 1 секунды. Этого времени достаточно чтобы завершились все переходные процессы.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

На входе блока питания, сразу после предохранителя установлен варистор. Он служит для защиты от повышения напряжение в сети выше опасного предела. При аварии сопротивление варистора резко падает и происходит короткое замыкание, в следствии которого перегорает предохранитель F1, тем самым размыкая цепь.

Таким вот образом я тестировал ИБП на полной мощности.

В качестве нагрузки у меня выступают 4 керамических, проволочных резистора мощностью 25Вт, погруженные в емкость с "кристально чистой" водой. После часа прохождения тока через такую воду все примеси всплывают наверх и чистая вода превращается в бурую, ржавую жижу. Вода усиленно испарялась и за час испытаний нагрелась практически до кипения. Вода необходима для отвода тепла от мощных резисторов, если кто не понял.

Трансформатор в моем варианте ИБП, намотан на сердечнике EPCOS ETD29. Первичная обмотка проводом 0,8мм2, 46 витков в два слоя. Все четыре вторичные обмотки намотаны тем же проводом в один слой по 12 витков. Может показаться, что сечение провода не достаточно, но это не так. Для работы этого ИБП на питание УМЗЧ этого достаточно, так как средняя потребляемая мощность значительно ниже максимальной, а кратковременные пики тока ИБП без труда отрабатывает за счет емкостей питания. При долговременной работе на резистор, при выходной мощности 200Вт, температура трансформатора не превысила 45 градусов.

Для увеличения выходного напряжение более 45В необходимо заменить выходные диоды VD5 VD6 на более высоковольтные.

Для увеличение выходной мощности необходимо использовать сердечник с большей габаритной мощностью и обмотками, намотанными проводом большего сечения. Для установки другого трансформатора придется изменить рисунок печатной платы.

Печатная плата в готовом виде выглядит так (выполнено ):

Размеры платы 188х88мм. Текстолит я использовал с толстой медью - 50мкм, вместо стандартных 35мкм. Можно использовать медь стандартной толщины. В любом случае не забывайте хорошенько пролудить дорожки.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153D

1 В блокнот
VT1 Биполярный транзистор

2N5551

1 В блокнот
VT2 Биполярный транзистор

2N5401

1 В блокнот
VT3 Биполярный транзистор

KSP13

1 Или MPSA13 В блокнот
VT4, VT5 MOSFET-транзистор

IRF740

2 В блокнот
VD1 Стабилитрон

1N4743A

1 13В 1.3Вт В блокнот
VD2, VD4 Выпрямительный диод

HER108

2 Или другой быстрый диод В блокнот
VD3 Выпрямительный диод

1N4148

1 В блокнот
VD5, VD6 Диод Шоттки

MBR20100CT

2 Или другой на соответствующее напряжение и ток В блокнот
VDS1 Выпрямительный диод

1N4007

4 В блокнот
VDS2 Диодный мост

RS607

1 В блокнот
VDR1 Варистор MYG14-431 1 В блокнот
HL1 Светодиод Красный 5мм 1 Только красный! Другие цвета не допустимы! В блокнот
K1 Реле TIANBO HJR-3FF-S-Z 1 Катушка 12В 400Ом В блокнот
R1 Резистор 0,25Вт

8.2 кОм

1 В блокнот
R2 Резистор 2Вт

18 кОм

1 В блокнот
R3 Резистор 0,25Вт

100 Ом

1 В блокнот
R5 Резистор 0,25Вт

47 кОм

1 В блокнот
R6 Резистор 2Вт

22 Ом

1 В блокнот
R4, R7 Резистор 0,25Вт

15 кОм

2 В блокнот
R8, R9 Резистор 0,25Вт

33 Ом

2 В блокнот
R10 Резистор подстроечный

3.3 кОм

1 Многооборотный

Блок питания построен по полу мостовой схеме на основе микросхемы IR2153. На выходе этого блока можно получить любое нужное вам напряжение, все зависит от параметров вторичной обмотки трансформатора.

Подробно рассмотрим схему импульсного блока питания.

Мощность источника питания именно с такими компонентами около 150 ватт.

Сетевое переменное напряжение через предохранитель и термистор поступает на диодный выпрямитель.

После выпрямителя стоит электролитический конденсатор, который в момент включения блока в сеть будет заряжаться большим током, термистор как раз ограничивает этот ток. Конденсатор нужен с напряжением 400-450 Вольт. Далее постоянное напряжение поступает на силовые ключи. Одновременно через ограничительный резистор и выпрямительный диод поступает питание на микросхему IR2153.

Резистор нужен мощный, не менее 2-х ватт, лучше взять 5-и ваттный. Напряжение питания для микросхемы дополнительно сглаживается небольшим электролитическим конденсатором, емкостью от 100 до 470мкФ, желательно на 35 Вольт. Микросхема начинает вырабатывать последовательность прямоугольных импульсов, частота которых зависят от номинала компонентов времязадающей цепи, в моем случае частота находиться в районе 45кГц.

На выходе установлен выпрямитель со средней точкой. Выпрямитель в виде диодной сборки в корпусе то-220. Если выходное напряжение планируется в пределах 40 вольт, то можно использовать диодные сборки выпаянные из компьютерных блоков питания.

Конденсатор вольтодобавки, предназначен для корректного срабатывания верхнего полевого ключа, емкость зависит от того, какой транзистор использован, но в среднем 1мкФ хватит для большинства случаев.

Перед запуском нужно проверить работу генератора. Для этих целей от внешнего источника питания на указанные выводы микросхемы подается около 15-и вольт постоянного напряжения.
Далее проверяется наличие прямоугольных импульсов на затворе полевых ключей, импульсы должны быть полностью идентичными, одинаковой частоты и заполнения.
Первый запуск источника питания обязательно делается через страховочную лампу накаливания на 220 Вольт с мощностью около 40 ватт, будьте предельно осторожны, не дотрагивайтесь платы во время работы, после отключения блока от сети дождитесь несколько минут пока высоковольтный конденсатор не разрядится через соответствующий резистор.
Очень важно указать то, что эта схема не имеет защиты от коротких замыканий, поэтому любые короткие замыкания, даже кратковременные приведут к выходу из строя силовых ключей и микросхемы IR2153, так, что будьте аккуратны.

Импульсный блок питания на IR2151-IR2153

Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.


На входе стоит PTC термистор – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа "вертикалка", но можно использовать диодную сборку типа "табуретка".

Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.

Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф .

Печатная плата

Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих "наворотов", присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных "плохому питанию" (фон и посторонние звуки).

В работе полевые транзисторы не сильно нагреваются.

Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

Собирая какое нибудь очередное устройство, все больше мучает вопрос чем же его питать. Да хорошо когда навалом разной аппаратуры где есть подходящие трансформаторы, а если перематывать??? Перемотать трансформатор занятие не из приятных, пусть даже в расчетах помогает приложения для для расчета трансформатора, сам процесс перемотки часто напрягает.

Помню как то был ТСШ-180, хороший анодно-накальный транс, да и пришлось перематывать. Мотал дня два наверное, плюс проливал лаком что бы была изоляция лучше и не гудел… Собрал его, здоровый такой. Сам весом 3 кг да чуть на ногу не упал. Подумал я об этом всем и решил перейти на импульсные блоки питания и на это масса причин.

Причины выбора импульных блоков питания:

1. П ервая и не маловажная причина, это финансовая. Вот у нас тот же ТСШ-180 а.-накальный стоит 150-180 грн. В то время как ИИП 200Вт на IR2153 в сборе стоит будет 130-160 грн. Да разница не велика, зато у вас же дома полно нужных деталей. К примеру я докупил только IRF740 и IR2153 и заплатил 40грн. Как разница?? А еще и от хлама немного избавился)) А еще незабываем что в расчет уже и мост и банки, а к трансу это тоже надо покупать. А хорошие баночки о как хорошо стоят. А на ИИП вместо 22 000мФ, можно поставить 3300мФ и разницы в фильтрации даже не заметиш

2. В торая причина габаритность. Трансы тяжелые, ватт так на 200 весом 3-4кг, заменяется ИИП массой 300г и размером платы гдето 120*120мм. Удобно в коробке DVD собрать что то мощное, Ланзар например…

3. Э то низкий уровень помех в пределах 20-20 000Гц. Это для усилителя низких частот очень хорошо, даже великолепно. Не помех, не фона нет.

На схеме видем силивую часть в которой присутствует: защитные цепи (R1,R2,FU1)фильтр C-R-C(C1,L1,C1), выпрямитель с фильтр-делителем(VD1(400В 3A),C3,C4,C6,C7, R44,R6) и ключевую часть в которую входят два мосфета(VT1,VT2), трансформатор(T1) и две помехо подавляющие цепи(R8C9,C8R7)

Ничего сложного и в управляющей части. Питающая часть микросхемы состоит из баластного резистора R9, стабилитрона VD2. фильтра C10C11, и еще одного баластного резистора R10. В ходе работы возможно прийдется подобрать R9R10.
Частота работы ШИМ задается R11C13. И расчитывается по формуле f=1/1.4*(R11+75Ом)*С13. В нашем случае выходит f=1/1.4*(10000+75)*0.000000001=70896 Гц= 70.9кГц. Будте внимательны с ноликами

Ну тут толком нечего рассказывать: Сдвоеный диод VD4, фильтр-выпрямитель C14-L3-C15-C16 и все. Помните при расчете, что это не стабилизированный БП и напряжение может плавать. Поэтому лучше при расчетах введите на пару вольт меньше

По расчету трансформатора вам поможет приложение для расчета Импульсных трансформаторов. Совет вторичку мотать косой из более тонкого провода, дабы избежать скин-эфекта.

Кстати у одного моего знакомого от такой схемы питается 2.1 собранны на TDA2030A сумарной мощью 65Вт. Это небольшая часть от того что выдает ИИП на IR2153, зато работает который год. Да опять же трансформатор на 70Вт щас стоит так же как и блок ИИП на IR2153, так в ИИП еще и запаса 130Вт…

На этом все, всем спасибо за внимание и удачи в сборке…

Главным компонентом рассматриваемого источника питания является микросхема (драйвер) IR2153. Данный драйвер выпускается в двух исполнениях - IR2153 и IR2153D. Буква D обозначает, что микросхема оснащена диодом, предназначенным для питания каскада управления верхнего ключа. Таким образом, если в схеме применить драйвер IR2153D, то диод D2 устанавливать не требуется. Частота генерации данного источника питания задается резистором R4 и конденсатором C6 подключенным к выводам микросхемы RT (ножка 2) и CT (ножка 3). Оптимальной частотой генерации микросхемы является частота в 40 – 70 кГц, именно под данный диапазон подобран сердечник трансформатора Tr1. Особенностью микросхемы является способность остановки генерации путем закорачивания вывода CT на минус. Этот принцип применен для организации защиты микросхемы от короткого замыкания на выходе данного источника питания.

Схема электрическая принципиальная импульсного блока питания на IR2153

Принцип работы источника питания