Самодельная солнечная батарея из фотодиодов. Мощная самодельная солнечная батарея

16.11.2021 Windows 10

В современном мире основными ресурсами энергии как право являются природные ресурсы. Для получении электрической энергии используются нефть, уголь, торф, газ, или радиоактивные вещества такие как плутоний и уран. Но все мы прекрасно понимаем, что наступит день и они закончатся, поэтому ученые в последнее время очень озабочены этим фактом. Единственный ресурс который не кончится - это вода, но гидроэлектростанции (ГЭС) не могут покрыть все расходы потребителей, ведь в нашем веке с развитием новейших технологий потребление электрической энергии резко возросло. А значит, наше будущее зависит от альтернативной энергетики. На данный момент уже применяются такие источники энергии, как ветростанции и солнечные модули. О ветростанциях мы поговорим в следующий раз, а речь сегодня пойдет о самодельной солнечной панели небольшой мощности, но которой хватит к примеру для зарядки мобильного телефона или питания светодиодной панели на пару ватт.

Данный модуль у меня работает уже пол года без всяких проблем, мощность небольшая, но для светодиодного освещения он в самый раз. Известно, что солнечные модули делают на полупроводниковых элементах, например кремний или германий, их КПД до недавнего времени был 11%, но уже сегодня ученым удалось поднять КПД таких модулей до 25%! И так начнем.

Прошу не судить за то, что для конструирования такой модули мне пришлось разобрать ровно 60 отечественных диодов типа КД2010 и ему подобных. Статья разумеется для новичков, которые интересуются альтернативными видами энергии, радио мастер в жизни не будет мучить себя изготовлением такой модули. Полупроводниковый кристалл диода при ярком солнце дает напряжение порядка 0.7 вольт, сила тока увы…. микроамперы. Для себя создал специальную технологию, которая позволяет очень аккуратно вынимать кристалл диода, металлический корпус диода нам не нужен. Итак ниже смотрим на сам процесс.

Берем сам диод, сверху у него есть стеклянная изоляция, его мы будем ломать нанеся слабенькие удары молотком пока стекло не треснет. Затем при помощи молотка нужно нанести удары по шву диода со всех сторон, в конце концов швы отойдут друг от друга и мы увидим кристалл, который припаян к металлическому корпусу диода. Теперь кристалл нужно отпаять от корпуса, для этого идем на кухню, включаем газовую плиту. Держим диод при помощи плоскогубцев на огне порядка 20 секунд, за это время плавится олово, и кристалл уже можно вынуть, удобно использовать пинцет. И так со всеми диодами, согласитесь процесс не сложный, но отнимает много времени. После того, когда все кристаллы готовы приступаем к сборке солнечной батареи.

Для сборки я использовал стандартную макетную плату, но вам не советую пользоваться ею, даже не представляйте как сложно паять на плате столько кристаллов! Изначально я хотел получить напряжение 6 вольт, но затем передумал и сделал модуль на 2 – 4 вольт. Почему так? спросите вы. Просто если использовать диоды для получения напряжения 6 вольт, нужно параллельно подключить порядка 10 диодов, но в таком случае получаем ничтожную силу тока, который даже не хватит для питания светодиода. А для получения 2 – 4 вольт достаточно собрать блоки которые состоят из 4 – 5 кристаллов подключенных последовательно, затем эти блоки нужно подключить параллельно для повышения силы тока. Таким образом подключая 5 блоков параллельно, ток достаточно большой для питания белого светодиода. И вторая причина по которой я выбрал именно это напряжение для батарейки – последнее время очень часто стали использоваться высококачественные DC-DC преобразователи, область их применения очень широка, например часто их используют для зарядки мобильного телефона всего от одной пальчиковой батарейки. Входное напряжение от 0.8 до 3 вольт, выходное – 5 – 5.5 вольт, выходной ток устройства до 400 мА, отличные параметры для зарядки мобильного телефона и питания небольшой светодиодной панельки которая у меня уже имелась. Итак общий принцип работы – солнечная модуль днем заряжает никель – кадмиевую батарейку емкостью 3300 мА, напряжение батарейки 1.2 вольт, затем ее можно использовать для зарядки мобильного телефона или питания светодиодов, но заранее нужно ставить токоограничивающий резистор на 10 Ом.

Потом друзья подарили целый чемодан диодов! Модуль был изготовлен в корпусе от старого советского стабилизатора напряжения, но по прежнему напряжение модуля 2.3 – 2.6 вольт. Теперь уже модуль заряжает щелочные аккумуляторы, мощность модуля 7 Ватт! Ниже представлен способ подключения кристаллов полупроводника. Прежде, чем паять кристаллы, нужно мультиметром проверить их полярность просветив кристалл на солнце. Для подключения был использован провод МГТФ.

Хочу также представить вашему вниманию схемы двух преобразователей, которые могут использоваться для зарядки мобильных устройств. Первая схема преобразователя выполнена на транзисторах. Она обеспечивает на выходе напряжение 6 В при токе 300 мА. Дроссель намотан на ферритовом кольце от старого блока питания, возможно использовать кольца от энергосберегающих ламп, содержит 35 витков проводом 0.5 мм. Транзистор КТ815 можно заменить на более мощный типа КТ819. КТ315 можно заменить на импортные аналоги типа С9014, 9018.

Вторая схема преобразователя выполнена на основе высококачественного низковольтного DC – DC преобразователя ZHDZ5 это аналог R1210N452D, транзистор 007G полный аналог MMBR5031LT1, у данного преобразователя очень высокий кпд, и он продолжает работоспособность даже тогда, когда напряжение батарейки ниже 0.9 – 0.8 вольт. Такая же схема используется в походных зарядных устройствах для мобильника, которые могут зарядить ваш мобильный телефон всего от одной пальчиковой батарейки. Дроссель состоит из 20 витков провода 0.3 мм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Вариант №1.
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ815А

1 В блокнот
VD1 Стабилитрон

TDZ9V1J

1 В блокнот
VD2 Диод

КД212А

1 В блокнот
VD3 Диод

КД522А

1 В блокнот
С1 47 мкФ 1 В блокнот
С2 Конденсатор 2200 пФ 1 В блокнот
С3 Конденсатор 0.1 мкФ 1 В блокнот
С4 Электролитический конденсатор 100 мкФ 1 В блокнот
R1 Резистор

24 кОм

1 В блокнот
R2 Резистор

220 Ом

1 В блокнот
R3, R4 Резистор

470 Ом

2 В блокнот
L1 Катушка индуктивности 1-5 мкГн 1 В блокнот
Вариант №2.
DC-DC преобразователь ZHDZ5 1 В блокнот
Транзистор 007G 1 В блокнот
Выпрямительный диод

1N4148

1 В блокнот
Диод Шоттки

Светодиоды и диоды под влиянием солнечных лучей или даже яркого света ламп способны производить электрический ток. Это значит, что их можно применить для своей самодельной панели. Самодельная солнечная батарея из диодов станет маленьким дополнительным источником электрического тока.

Необходимые материалы и инструменты

Для изготовления своими руками нужно подготовить:

  1. Светодиоды или диоды.
  2. Картонку или пластмассовую панель. Лучше взять панель от старых устройств (стабилизатора, радио). Эти панели имеют в себе много отверстий, в которые удобно вставлять контакты диодов. В картонке эти отверстия придется делать своими руками.
  3. Диод Шоттки. Необходим для предотвращения обратного движения электрического тока.
  4. Медные провода.
  5. Аккумулятор. Вполне подойдут аккумуляторы от фонариков, выпущенных в Китае. Обычно, один из них имеет напряжение 4 В и емкость не больше 1 500 мА.
  6. Олово.

Для изготовления солнечной панели нужны инструментами:

  1. Паяльник.
  2. Молоток.
  3. Плоскогубцы.
  4. Амперметр и вольтметр.

Подготовка кристалликов-полупроводников

В светодиодах кристаллики видимые. Они размещены под стеклянной или прозрачной пластиковой линзой. Некоторые рекомендуют разбивать ее молотком, некоторые советуют оставить ее, поскольку она может собирать свет в пучок и направлять его на полупроводник. Это позволяет улучшить производительность кристаллика. Если использовать светодиод по главному назначению, то эта линза будет рассеивать созданный им свет.

Если планируется сделать из старых советских железных диодов (лучше всего подходят модели кд2010 и кд203), то придется разобрать их и достать оттуда полупроводник.

Процесс разбора таков:

  1. Разбивают молотком стеклянный держатель верхнего контакта.
  2. С помощью плоскогубцев открывают диод. В середине размещается полупроводник. Он надежно зафиксирован на основании диода. При этом к его верху припаян медный провод. Последний соединен с верхним контактом диода.
  3. Берут нижнее основание с кристалликом и отправляются к газовой плитке. Держа основание диода плоскогубцами, его подносят к огню и нагревают. Кристалл должен находиться вверху. Основание нагреется, а вместе с ним горячим станет олово. Из-за этого оно растопится. Далее, используя пинцет, вынимают полупроводник.

Читайте также: Уличное освещение от светильников на солнечных батареях

Если будут использоваться стеклодиоды, то подготовка не является необходимой. Их можно сразу размещать на пластине.

Проведение расчетов

Самодельная солнечная панель представляет собой изделие, которое должно создавать ток желаемых характеристик. Поэтому нужно определить, сколько полупроводников стоит использовать.

Для этого необходимо измерить напряжение и силу тока, созданного одним полупроводником. Это делают с помощью специального инструмента. Все измерения проводят после того, как кристаллик оказался под солнечными лучами.

Полупроводник с диода кд2010 способен создать ток с напряжением до 0,7 В и силой до 7 мА. Стеклодиоды могут генерировать ток с напряжением до 0,3 В и силой до 0,2 мА.

Лучшую производительность способен продемонстрировать оранжевый, зеленый и красный светодиоды. Поскольку есть множество моделей светодиодов с кристаллами разных размеров, следует провести измерения каждого из приобретенных.

Расчеты проводят так:

  1. Определяют желаемые параметры солнечной батареи. Пусть при нормальном (среднем) солнечном свете она создаст ток с напряжением 9 В и мощностью 1 Вт.
  2. Определяют необходимое количество кристалликов, отталкиваясь от нужного напряжения. Напряжение созданного одним полупроводником диода кд2010 достигает 0,7 В. На практике оно будет меньше. Пусть оно будет достигать 0,5 В. Чтобы увеличить напряжение, нужно эти кристаллики подключить последовательно. При таком

С каждым днем выбросы углекислоты и токсичных веществ в атмосферу увеличивается, токсичные вещества вырабатываются при сгорании ископаемого топлива, в следствии чего постепенно уничтожают нашу планету. Поэтому внедрение «зеленой энергии», у которой вовсе отсутствует негативное влияние на окружающую среду, уже закрепила себя как базой основ новых электротехнологий. Одной из основ таких технологий получения экологически чистой электроэнергии это технология которая преобразует солнечный свет в электроэнергию. Далее пойдет речь о солнечных батареях, а так же их возможности в собственном доме.
В нынешнее время электроустановки в виде солнечных батарей изготовленных в промышленных условиях, используются для полного и частичного энерго-обеспечения и тепло-обеспечения дома, и стоят в районе 15-20 тысяч долларов при гарантии работы 25 лет.
Гелиосистемы разделяют на тепло обеспечения и энергообеспечения. В случае тепло обеспечения используются технологии солнечного коллектора. В случае энергообеспечения происходит фотоэлектрический эффект, с помощью которого происходит генерация электричества в солнечных батареях. Далее я опишу технологию ручной сборки солнечной батареи.
Технология ручной сборки солнечной батареи вовсе не сложна и даже очень проста и доступна всем. Почти каждый человек может собрать солнечные батареи с относительно высоким КПД при довольно низких затратах. Это экологично, выгодно, доступно и в последнее время модно.

Выбор солнечных элементов для солнечной панели

Приступив к созданию солнечной электростанции, нужно учитывать, что при ручной сборке солнечных батарей нет нужды сразу собирать полнофункциональную солнечную электростанцию, её в будущем можно будет наращивать. Если первый эксперимент ручной сборки оказался положительным, то после имеет смысл увеличить функциональность солнечной электростанции.

Прежде всего нужно знать что такое солнечная батарея, солнечная батарея — это прежде всего генератор, который работает на основе фотоэлектрического эффекта и преобразует солнечную тепловую энергию в электрическую энергию. Кванты света, которые вырабатывает солнце, попадают на кремниевую пластину и выбивает электрон с последней атомной орбиты кремния. Данный эффект создает большое количество свободных электронов, которые образуют поток электрического тока.

Перед тем как приступить к сборке солнечной батареи нужно сделать выбор в типе фотоэлектрического преобразователя. Фотоэлектрические преобразователи: монокристаллические, поликристаллические и аморфные. Для ручной сборки солнечной батареи чаще всего выбирают легко доступные в продаже поликристаллические и монокристаллические солнечные модули.

Солнечные панели из поликристаллического кремния имеют достаточно низкий КПД от 7 до 9%, но этот недостаток компенсируется тем, что поликристаллические панели практически не понижают КПД при облачной и пасмурной погоде, гарантийная работоспособности поликристаллических элементов составляет примерно 10 лет. Солнечные панели на основе элементов монокристаллического кремния имеют более высокий КПД около 13% и сроки работоспособности приблизительно 25 лет, но монокристаллические элементы сильно понижают мощность при отсутствии прямого попадания солнечного света. Величина КПД кристаллов кремния может существенно изменятся от разных производителей. На практике работы солнечных электростанций в полевых условиях можно сказать о сроке службы монокристаллических панелей более 30 лет, а для поликристаллических модулей — более чем 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых монокристаллических и поликристаллических модулей составляет не более 10 процентов, а у тонкопленочных аморфных модулей только за первые два года мощность может снизится на 10-40%.

Набор Solar Cells можно приобрести на аукционе Еbay для сборки солнечной батареи из 36 и 72 солнечных элементов. Эти наборы так же доступны в продаже в Украине и в России. Зачастую, для ручной сборки солнечных батарей используются солнечные модули В-типа, это те модули, которые отбраковали на промышленном производстве. Они не теряют своих эксплуатационных показателей, но зато намного дешевле.

Разработка проекта гелиевой энергосистемы

Проектирование задуманной солнечной электростанции зависит от способа её монтажа и установки. К примеру солнечные батареи должны устанавливаться под определенным наклоном, чтобы обеспечить прямое попадание солнечных лучей под перпендикулярным углом. КПД солнечной панели так же зависит от интенсивности световой энергии, а также зависит от угла попадания солнечных лучей.
Смотреть сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные солнечные панели очень часто снабжены специальными датчиками, которые обеспечивают движение солнечных панелей по направлению движения солнечных лучей, что очень увеличивает стоимость солнечных панелей. Но так же тут может быть применено ручное механическое управление углом наклона солнечных панелей. В зимнее время солнечные панели должны быть практически вертикальными, чтобы исключить залегание снега на солнечных панелях.

Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи следует устанавливать с солнечной стороны вашего дома, чтобы за световой день пребывание солнечных лучей на солнечных батареях было максимально. В зависимости от географического расположения вашего дома и времени года вычисляется оптимальный угол наклона для вашего месторасположения.

Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

При сооружении солнечных панелей можно выбирать самые разные материалы по массе и другим характеристикам. Но при выборе материалов следует учитывать максимально допустимые температуры нагрева материалов, т.к. при работе солнечных модулей на полную мощность температура не должна превышать 250 градусов по Цельсию. При пиковой температуре солнечные модули теряют свою функцию производства электрического тока.
Готовые гелиосистемы зачастую не предполагают охлаждения солнечных модулей. Ручное изготовление может включать в себя охлаждение гелиосистемы и управление углом наклона солнечных панелей для регулировки температуры модуля, а так же выбор прозрачного материала, который будет поглощать ИК-излучение.

Как показали расчеты, в ясный солнечный день из 1 метра солнечных панелей можно получить 120 Вт мощности, но этого не хватит чтоб запустить даже компьютер. Солнечные панели размером в 10 метров производит уже более 1кВт электроэнергии, что позволит снабдить электроэнергией светильники, телевизоры и ваш компьютер. Для обычной семьи 3-4 человека необходимо около 300 кВт в месяц, поэтому солнечные панели должны быть размеров 20м, при условии что солнечные панели будут установлены с солнечной стороны вашего дома.
Для уменьшения месячного электро-потребления советую использовать для освещения вместо обычных лампочек, светодиодные лампочки.

Изготовление каркаса солнечной батареи

Для изготовления корпуса солнечной панели в основном используют алюминиевые уголки. В интернет магазинах можно приобрести уже готовые корпуса для солнечных батарей. А так же для изготовления корпуса солнечной панели выбирают по желанию прозрачное покрытие.

Комплект рамы со стеклом для солнечной батареи, примерная стоимость от 33 долларов

При выборе прозрачного материала можно опираются на следующие характеристики материалов:

Если в качестве критерия выбора рассматривать показатель преломления солнечного света, то самый минимальный коэффициент у плексиглас, более дешевый вариант это обычное стекло, менее подходящий это поликарбонат. Но в продаже сейчас имеется поликарбонат с антиконденсатным покрытием, что обеспечивает качественный уровень теплозащиты.

Важно про изготовлении солнечных панелей выбирать прозрачные материалы которые не пропускают ИК-спектр, что снизит нагревание кремниевых элементов.

Схема поглощения УФ и ИК излучения различными стеклами. а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом .

Защитное силикатное стекло с оксидом железа обеспечивает максимальное поглощение ИК-спектра. ИК-спектр хорошо поглощает любое минеральное стекло, а так же минеральное стекло более устойчиво к повреждениям, но в тоже время является очень дорогим и недоступным.

Так же зачастую для солнечных панелей применяют специальные антибликовые сверх прозрачные стекла, которые пропускают до 98% спектра.

Солнечная панель в корпусе из оргстекла

Монтаж корпуса солнечной батареи

В данном случае будет показано изготовление солнечной панели из 36 поликристаллических солнечных модулей размером 81х150мм. Отсюда вычисляем размеры будущей солнечной панели. Важно при расчете между модулями оставлять небольшое расстояние, которое может меняются при воздействии атмосферных воздействий, т.е. оставляйте между модулями примерно 3-5мм. В итоге получим размер заготовки 835х690мм при ширине уголка 35мм.

Самодельная солнечная батарея изготовленная вручную, сделанная с использованием алюминиевого профиля, очень похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берем алюминиевый уголок, и выполняем заготовки рамки 835х690 мм. Чтобы можно было провести крепление метисов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносим силиконовый герметик.
Важно чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло требуется тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла используем метисы. Нужно закрепить 4 угла рамки и по периметру разместить два метиса с длинной стороны рамки и по одному метису с короткой стороны.
Метисы фиксируются при помощи шурупов.
Каркас солнечной батареи готов. Важно перед креплением солнечных элементов, нужно очистить стекло от пыли.

Подбор и пайка солнечных элементов

В данное время в интернет магазинах представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.

Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Из-за того что солнечная батарея, сделанная своими руками, ориентировочно в 4 раза дешевле заводской готовой, собственное изготовление — это огромная экономия средств. В интернет магазинах можно приобрести солнечные модули, элементы с дефектами, при этом они не теряют своей функциональности, но придется пожертвовать внешним видом солнечной батареи.

Поврежденные фотоэлементы не теряют своей функциональности

Если вы впервые занимаетесь изготовлением солнечных батарей, то лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Так как пайка контактов — это достаточно сложный процесс, сложность заключается в хрупкости солнечных элементов.

Если вы купили кремниевые элементы без проводников, то в первую очередь необходимо провести пайку контактов.


Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники надрезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов для солнечных панелей — это весьма кропотливая работа. Если с первого раза не удастся получить нормального соединения, то нужно повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого нужно избегать, можно уменьшить мощность паяльника таким образом — для этого нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Помните, что номинальная мощность паяльника нерегулируемого слишком большая для пайки кремниевых контактов.

Если вам продавцы проводников будут говорить, что припой на соединителе имеется, но вы его лучше нанесите дополнительно. Во время пайки будьте аккуратны, при минимальном усилии солнечные элементы лопаются, а так же не нужно складывать солнечные элементы пачкой, от массы нижние элементы могут треснуть.

Сборка и пайка солнечной батареи
При первой ручной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).

Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.

Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При данном типе крепления сами элементы дополнительно не герметизируют, они могут свободно расширяться под действием температуры и это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.

Пайку производим по приведенной ниже электросхеме. «Плюсовые» токонесущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.

По такому принципу соединяются все солнечные элементы.

Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.

Клемма устанавливается также с внешней стороны рамы.

Так выглядит схема подключения элементов без выведенной средней точки.

Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.

На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.

Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.

Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высоко эластичную поверхность. Стоимость «Sylgard 184» составляет около 40 долларов.

Герметик с высокой степенью эластичности «Sylgard 184»

Но с другой стороны, если вы не хотите тратить дополнительные деньги, то вполне можно задействовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».

Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.

После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.

Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.

Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Систему электроснабжения дома с использованием солнечных батарей принято называть фотоэлектрическими системами, т.е. системами, генерирующими энергию с использованием фотоэлектрического эффекта. Для собственных жилых домов рассмотрены три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из вышеперечисленных систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.

Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.

Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10–15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:
-суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
-аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
-инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24–48 В;
-контроллер солнечного разряда 40–50 А при напряжении в 24 В;
-источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Из этого следует, что для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых описан выше. Каждая солнечная панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования.

Информация с сайта:

Самостоятельное изготовление любого технического устройства из подручных средств всегда сопряжено с несколькими факторами. С одной стороны, ощутимая экономия финансов, с другой, солидные затраты времени и труда. Кроме того, вполне возможно, что собранное изделие будет работать несколько не так, как ожидалось, и выдавать совсем другие параметры. Солнечные батареи из диодов – не исключение.

Собрать такую батарею вполне возможно, но для этого потребуются, во-первых, диоды в достаточно большом количестве, во-вторых, плата для подложки, в-третьих, паяльное оборудование и навыки работы с ним. И, естественно, запас времени, поскольку размещение и пайка нужного количества диодов – процесс довольно долгий.

Как получается фототок

Внутри диода содержится полупроводниковый кристалл. Соответственно, под действием солнечных лучей в области p-n-зоны электроны приходят в движение и формируют направленный поток. Он же – фототок. Поэтому обычный диод вполне можно использовать в качестве элемента солнечной батареи.

Другое дело, что напряжение, вырабатываемое таким диодом, очень мало (для диодов типа КД оно составляет около 0,5 В), сила тока при этом – не более 7 мА. Для сравнения, ток потребления белого светодиода достигает 20 мА.

Из старых диодов

Первый этап изготовления диодной батареи своими руками – открытие внутреннего кристалла, чтобы на него попадали лучи солнца. Для этого верхняя часть диода аккуратно срезается и снимается, а нижняя, с кристаллом, подогревается над включенной газовой плитой примерно 20 сек.

Это нужно для того, чтобы расплавился припой, удерживающий кристалл, и кристалл легко извлекся при помощи пинцета. Полученные кристаллы припаиваются к монтажной плате (можно использовать любую подходящую подложку).

Количество кристаллов и схема их расположения зависят от требуемых в итоге параметров. К примеру, для получения на выходе 2-4 В можно собрать 5 блоков из 4-5 последовательно спаянных кристаллов. Между собой блоки коммутируются параллельно. Такой способ позволяет получить нужное напряжение при силе тока, достаточной для питания небольшого светодиодного устройства. Если же использовать только параллельное соединение, то при возросшем напряжении итоговая сила тока будет слишком маленькой.

Из светодиодов

Современные светодиоды тоже подойдут для изготовления мини-солнечной батареи. Принцип работы их фактически аналогичен обычным диодам, отличие только в наличии особого пластикового корпуса. Этот корпус выступает в роли своеобразной линзы и фокусирует лучи солнца на проводящем кристалле.

Вырабатываемое напряжение за счет этого будет выше, чем у обычных диодов. Так, для красно-прозрачного светодиода оно составляет примерно 1,3 В, для инфракрасного – 0,9 В, для зеленого – 1,5 В. Что же касается вырабатываемого батареей тока, то его величина будет незначительной. Как правило, из батареи на 100 диодов удается получить порядка 0,5 мА.

Размещать светодиоды можно как и на текстолитовой (или схожей) подложке, так и на простом плотном картоне. Принципы построения схемы и расчета требуемых параметров такие же, как и при работе с обычными диодами.

Есть ли польза?

Когда речь идет о светодиодах, не стоит забывать о таком явлении, как потребление тока самими диодами и их самопроизвольное свечение. Иными словами, в то время, когда часть светодиодов генерирует электричество, остальные будут его потреблять. В итоге, напряжение схемы увеличивается далеко не пропорционально числу задействованных элементов, и в определенный момент «обратные потери» становятся слишком значительными.

Кроме того, нормально работать самодельная батарея из диодов может только в ясную солнечную погоду. В условиях облачности ее выработка стремится к нулю.

Представляет подборку из форума – обсуждение идеи солнечной батареи на светодиодах. Идея, казалось бы, лежит на поверхности, но до конца ее никто пока не реализовал.

В отличие от кремниевых пластин, которые в домашних условиях из песка не выплавишь, светодиодов немеряно впаяно по всяким старым платам, которые сейчас обычно просто выкидывают. К тому же, на светодиодах имеется «природный» концентратор света – тот самый корпус, который рассеивает свет при работе светодиода в естественном режиме!

Если вы сделаете рабочий экземпляр – пишите нам , EnergyFuture.RU опубликует ваш рассказ и подарит вам футболку со своим логотипом!

Alex_Soroka

дернуло меня два светодиода прозрачной заливки но желтого цвета вставить в тестер китайский и выставить на солнце

…получил 1.5 Вольта! причем ориентация не точно на солнце – а если точно – то и выше. Ток – 5.6мА!!! (два светодиода паралельно)

Токи: от лампы настольной (люминисц.) на 9Вт мощности – получил 0.8В, ток – 3.5мА

Вопросик сразу возник: а может есть смысл на светодиодах строить солн. батарею?

У светодиодов есть линза - так что они собирают свет в пучек на сам кристалл полупроводника, т.е. усиливают свет, а значит кристалл надо меньше чем классические солн.батт – которые жутко дорогие… Светодиоды можно самые простые – сверхяркие нам не нужны…

Да и по Дискавери показывали недавно – народ ставит линзу и маааленькую пластинку солнечного элемента – так линза чуть не выжигает его…

Надо посмотреть - может есть «бросовые» маленькие светодиоды – не сверхяркие, а просто любые с прозрачным корпусом? …и собрать для них плату 10х10см которая будет как батарея – но это посчитать надо как соединять – чтобы получить 9-12В и ток заметный…

Светодиоды я применял стандартные – не 3мм диам. а 5мм. желтого свечения но с прозрачной заливкой акрилом(как раз примерно пик диапазона светимости Солнца). Вот и получается что «пятно» 5мм диаметра концентрируется линзой светодиода в точку примерно 0.5мм2(кристалл)

Смотрите в Инете и Википедии «спектр Солнца» – и по нему ищите светодиоды ближайшие к максимуму.

Drovalex

Ну та в чем вопрос? Конечно, можно использовать. Но вот мне кажется, что при той же мощности батарея на диодах обойдется как и обычная солнце батарея. А вот если будет снимать с килоВ.м больше, чем обычная солнце батарея, тогда это и есть цель – соотношение затрат на килоВ.м.

ФЭ модуль MSW12-12________Цена: 2.750 руб.

Пиковая мощность: 12Вт ±5% Номинальное напряжение: 12 В

Напряжение в точке максимальной мощности – 17 В Ток в точке максимальной мощности: 0,7 А

Размеры: 270*480*17мм Вес: 0,9 кг

Светодиодов с вашими замерами потребуется около 1400 штук, чтобы развить аналогичную этой батареии мощность. Да, если диоды покупать в Кнр, то такая батарея из диодов раза в два дешевле будет, чем ФЭ. Так что успехов в захвате солнечного света.

Михенбай

Вы пишите …получил 1.5 Вольта! причем ориентация не точно на солнце – а если точно

То и выше. Ток – 5.6мА!!! (два светодиода параллельно)

Считаю 400 светодиодов выдадут 1,12 ампера и 1.5 вольта!!! чтобы получить 12вольт при том же токе необходимо спаять сборочку из 3200 светодиодиков. размеры я не прикидывал и вес. цена (допустим светодиод стоит 50 копеек в супероптовой конторе на светодиодном заводе) получаем 1600 руп за батарею 12 вольт и 13.44 Ватта. Неплохо!!!

Overrider

проверял светодиоды 5R3SCB-2/W красные, последовательно 18 штук (это у меня задний габарит такой) около вольта при поднесении почти вплотную к энергосберегающей лампе. 5Y3SCС-2/W жёлтые в той же конфигурации (поворотники), ещё меньше, что-то около 0.3-0.4в. Ток не замерял, ибо смысл?

Если соберётесь делать солнечную батарею такие светодиоды брать не стоит

Такими солнечными батарейками я баловался в 2000 г., так как по работе имею доступ к сверхярким светодиодам (монтирую электронные часы на светодиодах). Могу сказать, что тогда использовал красные сверхяркие светодиоды, с одного диода снималось напряжение 1,63 В, но ток был маленький 10-15 мкА, фотобатарейкой питал часы на ЖК, фотобатарея из двух светодиодов стоит у меня на автономном серебрителе воды (что бы работал без батареек, тем более, что светодиодов и серебряных электродов хватит лет на 20 – 30). Ставил простой опыт – к батарее из 6 светодиодов подключал сверхяркий светодиод, который заметно светился. На спор я делал на подобном девайсе емкостной накопитель (ставил электролит на 15000, мкФ), а потом разряжал его на лампочку 2,5 В * 0,15 А, лампочка кратковременно горела. Желтые и зеленые тоже пробовал, но напряжение с них снимается меньшее, и ток был небольшой. Попробую на днях современные светодиоды. Согласен, что испытывать их надо только на солнечном свете, но в крайнем случае и лампа накаливания годится. Не пойдут светодиоды синего и белого свечения, так у них люминофор возбуждается ультрафиолетом, а подойдут все те, у которых непосредственно излучает кристалл.